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Abstract – An extension of the generalized 
parameter extraction method for the case of 
multiple excitations is considered. The task of the 
analysis is to obtain the circuit response in 
symbolic form. The approach is based on 
simultaneous determinant calculation of numerator 
and denominator of the function that presents the 
response. An example of the method application 
illustrates the theoretical part of the paper.  
 
1 INTRODUCTION 
 
Generalized parameter extraction method that was 
proposed and discussed in [1], [2] is an effective tool 
for network symbolic analysis. The method can be 
used for analysis of the circuit with all type of 
controlled sources. It does require neither matrix, nor 
ordinary graph description of the circuit. Analysis can 
be done using equivalent presentation of the circuit 
based on so called oriented nullor description of active 
elements. The symbol of the oriented nullor, firstly 
considered in [3], is shown in Fig.1  
 
 
 
 
 
 
An idea of the method is expressed by the simple 
formula which generalizes known Feussner's equations 
(see references to Feussner's papers in [2], [4]) like as 

)0()1( →∆+→∆=∆ χχχ ,          (1) 

where parameter χ  corresponds to the value of the 
controlled source parameter, )1( →∆ χ and 

)0( →∆ χ correspond to determinants of the circuit 
matrix when the controlled source is replaced by the 
oriented nullor and when the controlled source is 
deleted from the circuit respectively. (It is necessary to 
note that the similar formula has been used in [5], but 
without proof of it). An illustration of the approach is 
in Fig.2, where all types of controlled sources are 
depicted. The calculated determinants are shown in the 
figure in circuitry–algebraic forms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The calculation procedure has been described in 
details in previous publications [1], [2]. Thus, let us 
note here only principle statements. To calculate the 
determinant of the whole circuit eq.(1) is used together 
with nullor and passive element extraction formulas. 

In each step of the determinant expansion the 
solvability conditions should be verified. General 
topological conditions for the solvability of linear 
networks can be formulated in the theorem proved in 
the paper [1] based on results proposed in [6], [7]. 
These necessary and sufficient conditions for the 
existence of solvability are 

1. If and only if there is no loop consisting of both 
controlled-voltage-source branches and norators only 
nor no loop consisting of both current-sensor branches 
and nullator only. 

2. If and only if there is no cutset consisting of both 
controlled-current-source branches and norators only 
nor no cutset consisting of both voltage-sensor 
branches and nullators only. 

Symbolic methods are oriented mainly to generate 
expressions of the network functions. But in case of 
multiple excitations linear circuit is characterized by 
its output response. To calculate the response matrix 
determinants should be computed. It means that the 
parameter extraction method can be effectively used as 
well to solve the task. Thus, the purpose of current 

Figure 1: Oriented norator and nullator pair.
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Figure 2: Extraction of the element parameters. 



 

paper is to extend an application of generalized 
parameter extraction method for the calculation of the 
network response in multiple excitation case. 

The paper consists of four Sections. It is organized 
as follows. After the short Introduction an idea of the 
approach is described in Section II. Practical example 
is discussed in Section III. Conclusion summarizes the 
paper. 
 
2 RESPONSE CALCULATION  
   IN SYMBOLIC FORM 
 
Let us consider the circuit under the influence of 
current and voltage sources J and E respectively as 
shown in Fig.3a. The task of the analysis is to 
calculate current I, which is indicated in the right 
branch of the circuit. This branch will be called further 
as a current-sensor. (Analogously the branch 
corresponding to the calculated or controlling voltage 
will be called as a voltage-sensor). To understand the 
conception of the approach the circuit of Fig.3a is 
equivalently transformed to the form of its augmented 
circuit (see Fig.3b) [4], where the independent sources 
are changed to their current controlled analogs. It is 
supposed that each source is controlled by own current 
I, which flows through the same branch. 
 
 
 
 
 
 
 
 

Figure 3: Equivalent transformation: 
initial circuit (a), augmented circuit (b). 

 
The calculated current is evaluated by means of the 
twice repeated expansion (1) due to generalized 
parameter extraction method. Thus the circuit 
determinant is expressed as a sum of three terms 
shown in Fig.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Expansion of the circuit determinant. 
 

The augmented circuit does not include independent 
sources. Taking this fact into account and supposing 
that initially I is not equal to zero it is possible to 
conclude that determinant of this circuit is equal to 
zero. Say other words, the left side of circuitry–
algebraic equation of Fig.4 is equal to 0. Thus, the 
current I and simultaneously output response of the 
circuit is determined by equation of Fig.5. The 
determinants in the numerator are calculated using 
generalized parameter extraction method. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Circuitry-algebraic equation  
for the calculation of the current response. 

 
Let us note that current-sensor branch includes the 
nullator in each of the determinants of the numerator 
shown in Fig.5. This statement gives the possibility to 
introduce a new circuit element that can be formally 
called nullator controlled multidimensional source. 
Multidimensional source can consist of an arbitrary 
number of current and/or voltage sources. The 
controlling element is the same for each of the sources. 
It will be indicated in figures as a shaded nullator. 
Nullator of the source has got the same properties as a 
standard nullator. Thus, all known operations with 
nullators are still valid in this case. Obviously that the 
network can include only one nullator controlled 
multidimensional source. For the two-dimensional 
source that is discussed currently it is described 
analytically as  
U=0, I=0 
for the input nodes corresponding to the nullator and  
U=E, I=J 
for the output nodes corresponding to the sources. 
Parameters of initial independent sources E and J will 
be used as parameters of the nullator controlled 
multidimensional source.  
Let us consider nullator controlled multidimensional 
source consisting of n current and voltage sources with 
parameters p1, p2, … pn, where pi is equal to Ei(or Ji). 
To extract parameters of multidimensional source pi 
the equation (1) can be used in its modified form. On 
account of this reason the determinant ∆  is expressed 
by the following formula 

          21 ∆+∆=∆ ip .            (2) 
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The network associated with ∆1 is obtained from the 
initial network when the source with parameter pi 
corresponding to Ei or Ji is replaced by a norator, the 
nullator of the multidimensional source is replaced by 
a standard nullator, and other sources with parameters 
p1, p2, …pi-1, …pi+1, … pn are contracting if they 
belong to the class of voltage sources or are removing 
if they belong to the class of current sources. The 
network associated with ∆2, is obtained from the initial 
network when the extracted voltage sources Ei are 
contracting or the extracted current sources Ji are 
removing. ∆2 will be equal to zero if all parameters of 
nullator controlled multidimensional source have been 
extracted. Thus, the equation of Fig.5 can be 
represented as shown in Fig. 6. 
 
 
 
 
 
 
 
 

Figure 6: Circuitry-algebraic equation 
for evaluation of the current response. 

 
The same approach is used when the voltage output 
response is calculated (see Fig.7). 
 
 
 
 
 
 
 
 
Figure 7: Equivalent transformation: initial circuit (a), 

augmented circuit (b). 
 
Dropping intermediate calculation, the circuitry-
algebraic equation for the evaluation of the voltage 
output response is presented in the form as it is shown 
in Fig.8. 
 
 
 
 
 
 
 

 
 

Figure 8: Circuitry-algebraic equation  
for the evaluation of the voltage response. 

 
The discussed method generalizes the sorting scheme 
proposed in the paper [4]. The introduction of the new 

circuit element nullator controlled multidimensional 
source allows the calculation of the function 
numerator corresponding to the response as a unified 
equation. The approach has been realized in the 
program CIRSYMD as a part of the software tool 
SYMBOL. The program is free distributed. To obtain 
it, please, contact to vvfil@mail.ru. Numerical 
experiments using CIRSYMD have demonstrated that 
the proposed concept reduces a number of arithmetic 
operations (summation and multiplication) per 20-40% 
in comparison to approach based on superposition 
principle. 
 
3 EXAMPLE 
 
As an example of the method application we'd like to 
analyze the circuit shown in Fig. 9a. It consists of the 
differential amplifier terminated by a two-pole with 
the transfer function T=N2/D2. The augmented version 
of the circuit is presented in Fig.9b. The task of the 
analysis is to calculate the output voltage of the 
amplifier U in symbolic form like as U=–N/D. Let us 
note that the voltage-sensor corresponds to the voltage 
drop U. The calculation procedure is illustrated by 
Fig.10 and Fig.11. 
 
 
 
 
 
 
 
 

 
Figure 9: Differential amplifier (a),  
nullor based equivalent circuit (b). 

 
To calculate numerator N of the response function 

the independent voltage sources E1 and E2 are 
represented as a nullator controlled two-dimensional 
voltage source where the controlling nullator is located 
at the output node instead of voltage-sensor.  
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Figure 10: Calculation of the function numerator. 
 
Following operations are demonstrated in Fig.10: 
preliminary equivalent transformations when two 
nullators change places and orientation of the norator 
is changed as well (the determinant sign is preserved 
after these operations); the decomposition of the 
circuit in accordance to modification of bisection 
theorem for the case of section in the profile a-b [1]; 
the extraction of the nullator controlled two-
dimensional source parameters in accordance to 
equation (2).  

To calculate the function denominator excitation 
sources E1, E2 are contracted and the voltage-sensor U 
is removed from the equivalent circuit of the amplifier.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Calculation of the function denominator. 

 
Following operations are demonstrated in Fig.11: the 
decomposition of the circuit in accordance to bisection 
theorem in the profile a-b [1]; the element Z2 is 
contracted because it is connected in series with 
norator; the element Z1 is extracted because it is 
connected in parallel with norator; the series 
connection of norator and nullator is removed.  

Thus, the voltage response of the amplifier is 
expressed by the following formula 
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As one can see, equation (3) corresponds to the 
transfer function of the cascaded connection of the 
differential amplifier and its terminal. If the approach 
based on superposition principle is used the result will 
be expressed as 
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Thus, the number of operations in the last case will be 
increased by a number of operations which is needed 
to calculate N2 and to multiply it in the second term of 
the numerator. 
 
4 CONCLUSIONS 
 
The proposed method allows the calculation of the 
current or voltage responses of the circuit in a case of 
multiple excitations in symbolic form. It is based on 
the conception of nullator controlled multidimensional 
source and does not require special calculation of 
partial transfer function from each of the input 
sources. The comparison with the standard approach 
based on superposition principle shows an advantage 
of the proposed method.  
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